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Communications to the Editor 

A Useful Diene for the Diels-Alder Reaction 

Sir: 

The range of variations, in terms of functionality and oxi­
dation level, which has been developed for Diels-Alder di-
enophiles has not been paralleled for the dienic compo­
nents.1 The major structural modification for the dienes has 
been realized by manipulation of their alkylation level {cf. 
1,3-butadiene, alkylated butadienes, cycloalkadienes, an­
thracenes, etc.). Also, the 1- and 3-alkoxydiene derivatives 
are very important in that they are more reactive than 1,3-
butadiene itself and also allow for the introduction of oxy­
gen into the resultant product. 

In connection with a variety of synthetic objectives it 
would be useful to realize transformations of the type gen­
eralized below.2-3 

The nature of X and Z should be such as to confer high 
reactivity and high orientational specificity on diene 1 in its 
reactions with unsymmetrical dienophiles of the type 2, 
where Y is an election withdrawing group such as carbonyl, 
cyano, etc.4 The character of X should allow for facile con­
version of the XC=C type of enol derivative in 3 into the 
ketone found in 4 and 5. The function Z should be amena­
ble to /3-elimination, thus allowing for the transformation of 
4 —* 5. Indeed, the direct transformation of 3 —• 5 {cf. ar­
rows) may also be possible.5 Alternatively, the Z group in 4 
may be maintained for purposes of protection of a latent 
enone or, possibly, for its own functionality. Finally, of 
course, the diene 1 should be readily available. 
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A 1,3-dialkoxybutadiene, in principle, meets all the above 
stated structural specifications. Such systems have been 
generated and used in the cyclohexadiene series.6-7 How­
ever, there is only one recorded example of the preparation 
and use of a parent 1,3-dialkoxybutadiene. The preparation 
of this type of compound is beset by severe difficulties. The 
primary route to enol ethers involves acetal formation9 fol­
lowed by pyrolytic dealcoholysis. The difficulties associated 
with this rather cumbersome process are compounded when 
the objective is the formation of enol ethers of the alkoxy-
butadiene type. This generally involves the twofold elimina­
tion of alcohol from a /3-alkoxyacetal system.10 In our labo­
ratory attempts at the formation of the parent compound, 
1,3-dimethoxy- 1,3-butadiene, {cf. ref 7) by pyrolysis of 
1,1,3,3-tetramethoxybutane under several catalytic condi­
tions were uniformly unsuccessful and were invariably at­
tended by the formation of intractible tars.1' 

In contrast, the formation of silyl enol ethers by direct si-
lylation of aldehydes and ketones is considerably more 
straightforward. In general, two procedures have been suc­
cessfully employed. The ketone may be silylated using tri-

ethylamine-trimethylchlorosilane.12 Alternatively an eno-
late, generated in an experimentally distinct step, is silylat­
ed using trimethylchlorosilane.13 

With these considerations in mind, we studied the feasi­
bility of silylating the readily (and commercially) available 
;ra«j--4-methoxybutene-2-one (6). It will be noted that the 
carbonyl group of 6 is a vinylogous ester. Accordingly, it 
was perhaps not surprising14 to find that attempted silyla-
tion of 6 by the trimethylamine method gave only the fain­
test indication of success. However, reaction of 6 with tri­
methylchlorosilane in the presence of triethylamine-zinc 
chloride15 gave a 68% yield of /ra«^-l-methoxy-3-trimeth-
ylsilyloxy-1,3-butadiene (7) as an easily distillable liquid. A 
procedure for the preparation of 58 g of this compound is 
given.16 Below we describe the facile cycloaddition reac­
tions17 of 7 with dienophiles and the subsequent unraveling 
of the adducts so produced. This chemistry, coupled with 
the ready availability of compound 7, mark this diene as a 
reagent of considerable possibilities in synthesis. Moreover, 
the strategy implicit in the formation and reactions of 7 
may be extendable to the incorporation of still more elabo­
rate functionality, though this remains to be demonstrated. 
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Addition of maleic anhydride (1 equiv) to compound 7 (2 
eq) at room temperature in neat form results in an exother­
mic reaction leading to a homogeneous solution. The nmr 
spectrum of the solution indicates the formation of adduct 
8. Work-up with HCl (0.1 N)-THF at room temperature 
for 10 min gives a 93% yield of the crystalline methoxyketo-
anhydride 9, mp 97-98° (ether-chloroform): vmax

CHCl3 

1852, 1786, 1720 cm"1; nmr S (CDCl3) 3.25 (s, 3 H, 
OCH3), 4.1-4.3 (m, 1 H, CH3OCHR2). 

The stereochemical assignment for 9 follows from the 
nmr spectrum of its precursor, 8, wherein JH , (5 5.02)-^ 
(<5 4.16) = 6.0 Hz and ZH2-H3 = 3.6 Hz are easily seen. The 
assignment is also in accord with the usual precept of endo 
addition.43 

A different pathway is followed during the reaction of 7 
(1.5 equiv) with dimethyl acetylenedicarboxylate (1 equiv). 
In benzene under reflux, cycloaddition is accompanied by 
1,4-elimination of methanol. The crude phenyl silyl ether, 
so produced, is hydrolyzed with dilute acid to give the 
known dimethyl 4-hydroxy-o-phthalate (10), mp 105.5-
106.5, lit.18 107-108°, in 79% overall yield. 

Compound 7 may also be used in a one-step synthesis of 
oxygenated naphthalenes. Treatment with p-benzoquinone 
results in an exothermic reaction. It was found most advan­
tageous to acetylate the product so produced (acetic anhy-
dride-pyridine, room temperature) whereupon an 87% yield 
of 1,4,6-triacetoxynaphthalene (11), mp 92-95° (lit.19 94-
95°), was obtained. 

We return to the applications of compound 7 to alicyclic 
synthesis. Compound 7 (1.5 equiv) was heated with methyl 
vinyl ketone (1 equiv) at 95° for 20 hr. The adduct was then 
subjected to rapid acidic work-up. At this stage a mixture of 
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enediones, 12 and 13 («z. 1:1), resulted. Neither was ob­
tained in pure form but the presence of each component 
could be ascertained by nmr analysis. When this mixture 
was exposed to the action of 0.1 N HCl-THF for 1 hr at 
room temperature, an 86% overall yield of 13 (pmaxCHai 

1727, 1684, 1647 cm"1; nmr 5 (CDCl3) 2.30 (s, 3 H), 
2.10-2.80 (m, 4 H), 3.03 (d, xt, J = 4 Hz, J = 2 Hz, 2 H), 
6.73 (t, J = 4 Hz, 1 H)) contaminated by ca. 5% of 12 was 
isolated. The 2 H multiplet centered at 5 3.03 is assigned to 
the allylic methylene protons at C2 adjacent to the cyclic 
ketone. Compound 13 was reduced (5% Pd-C-EtOH) to 
the known20 4-acetylcyclohexanone. Since the 2,4-DNP de­
rivative produced from this material had a melting point 
(EtOAC) of 218-218.5°, while it has been reported from 
200°20 to 207°,21 our compound was submitted to combus­
tion analysis. Anal. Calcd for bis(2,4-DNP: C, 48.00; H, 
4.02; N, 22.39. Found: C, 48.07; H, 3.95; N, 22.15. While 
we have not established the point with certainty, we believe 
12 to be the principal kinetic product from unraveling of the 
Diels-Alder adduct. This would, of course, be the expected 
product if the enone is produced without involvement of an 
intermediate /3-methoxy ketone, {cf. 3 —* 5 and ref 5). 

The reaction of compound 7 with methacrolein (benzene, 
reflux, 20 hr) is indicative of its possibilities for the one-step 
synthesis of 4,4-disubstituted cyclohexenones.22 The ad­
duct, upon gentle acidic hydrolysis, gave a 72% yield of 4-
methyl-4-formylcyclohex-2-ene-l-one (14).23 Compound 
14 ( iw C H C i 3 2732, 1720, 1765, 1594, 874 cm"1; 5 (CDCl3 
1.31 (s, 3 H), 1.70-2.27 (m, 4 H); 5.94 (d, J = 10 Hz), 
6.62 (d, J = 10 Hz, 1 H), 9.40 (s, 1 H)) was characterized 
as its bis(2,4-DNP), mp (EtOAC-EtOH) 136-136.5°. The 
AB pattern of the vinylic protons in the nmr spectrum rules 
out the alternative regioisomer 5-methyl-5-formylcyclohex-
2-ene-l-one. The latter would be expected to exhibit a mul­
tiplet for the proton on the /3-carbon. 
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Further applications of siloxydienes to organic synthesis 
are currently under investigation. 
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Reactions of (Diphenylcarbene)pentacarbonyltungsten(O) 
with Alkenes. Role of Metal-Carbene Complexes in 
Cyclopropanation and Olefin Metathesis Reactions 

Sir: 

Stable transition metal-carbene complexes1 are poten­
tially useful model systems for the study of catalytic reac­
tions such as cyclopropanation and olefin metathesis2 which 
are postulated to involve metal-carbene complexes as tran­
sient intermediates.3 Heteroatom-substituted carbene com­
plexes have proven to be somewhat too thermally stable and 
unreactive as methylene transfer agents toward simple alk-
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